Suppression of growth arrest and DNA damage-inducible 45alpha expression confers resistance to sulindac and indomethacin-induced gastric mucosal injury.
نویسندگان
چکیده
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as sulindac and indomethacin are a major cause of gastric erosions and ulcers. Induction of apoptosis by NSAIDs is an important mechanism involved. Understanding how NSAIDs affect genes that regulate apoptosis is useful for designing therapeutic or preventive strategies and for evaluating the efficacy of safer drugs being developed. We investigated whether growth arrest and DNA damage-inducible 45alpha (GADD45alpha), a stress signal response gene involved in regulation of DNA repair and induction of apoptosis, plays a part in NSAID-induced gastric mucosal injury and apoptosis in vivo in mice and in vitro in cultured human AGS and rat RGM-1 gastric epithelial cells. Intraperitoneal administration of sulindac and indomethacin both resulted in up-regulation of GADD45alpha expression and induction of significant injury and apoptosis in gastric mucosa of wild-type mice. GADD45alpha(-/-) mice were markedly more resistant to both sulindac- and indomethacin-induced gastric mucosal injury and apoptosis than wild-type mice. Sulindac sulfide and indomethacin treatments also concentration-dependently increased GADD45alpha expression and apoptosis in AGS and RGM-1 cells. Antisense suppression of GADD45alpha expression significantly reduced sulindac and indomethacin-induced activation of caspase-9 and apoptosis in AGS cells. Pretreatments with exogenous prostaglandins and small interfering RNA suppression of cyclooxygenase (COX)-1 and -2 did not affect up-regulation of GADD45alpha by sulindac sulfide and indomethacin in AGS cells. These findings indicate that GADD45alpha up-regulation is a COX-independent mechanism that is required for induction of severe gastric mucosal apoptosis and injury by NSAIDs, probably via a capase-9-dependent pathway of programmed cell death.
منابع مشابه
Transcriptome Analysis for Cytoprotective Actions of Rebamipide against Indomethacin-Induced Gastric Mucosal Injury in Rats
We have reported that rebamipide, a gastroprotective drug, suppresses indomethacin-induced gastric mucosal injury in humans and rats. However, the mechanisms of the cytoprotective actions of rebamipide have not been fully addressed. In the present study, we determined mRNA expression profile of the gastric mucosa treated with indomethacin in rats, and investigated the cytoprotective effects of ...
متن کاملThe anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats
The present study aimed to evaluate the protective effect of gallic acid on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rat. Forty male rats were randomly divided into sham, control (I/R injury) and three gallic acid-pretreated groups. To induce I/R lesions, the celiac artery was clamped for 30 min and then the clamp was removed to allow reperfusion for 6 hr. Pretreat...
متن کاملAnnexin-1 modulates repair of gastric mucosal injury.
Annexin-1 is a glucocorticoid-inducible protein that plays an important effector role in the resolution of inflammation and has recently been shown to contribute to the resistance of the stomach to injury. Using an integrated genetic and pharmacological approach, we have tested the hypothesis that annexin-1 contributes to the healing of mucosal injury, given that such injury is accompanied by a...
متن کاملGastroprotective effect of sodium hydrosulfide against indomethacin-induced gastric ulcer in diabetic rats
Introduction: The incidence rate of gastric erosions and ulcers in diabetic patients are higher due to failure of mucosal antioxidant defense and maintain enough blood flow. The present study evaluated the gastro-protective effect of sodium hydrosulfide (NaHS) against indomethacin-induced gastric lesions in diabetic rats. Methods: In order to test anti-ulcer activity of NaHS against indomet...
متن کاملEPSIN 3, a novel p53 target, regulates the apoptotic pathway and gastric carcinogenesis1
BACKGROUND & AIM p53 activation by cellular stresses induces the transcription of hundreds of its target genes. To elucidate the entire picture of its downstream pathway, we screened a cDNA microarray dataset of adriamycin-treated HCT116 p53-/- or p53+/+ cells and identified EPSIN 3 as a novel p53 target. METHODS Potential p53 binding sequences in the EPSIN 3 locus were evaluated by reporter ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 334 3 شماره
صفحات -
تاریخ انتشار 2010